

Dynamic Dynamic
ProgrammingProgramming

By Harry WigginsBy Harry Wiggins

Introduction
• DP is a confusing name for a

programming technique that
dramatically reduces the runtime from
exponential to polynomial time.

• Essentially we avoid solving the same
problem twice, by finding
subproblems(like strong induction).

• We demonstrate this with an example.

Strong induction
• Let S(n) be a statement concerning

some integer n ie
1^2 + 2^2 + … + n^2 = n(n+1)(2n

+1)/6
• S(1) is true
• Using the fact that S(1), …, S(n-1) is

true we deduce that S(n) is true.
• Hence result holds for all statements.

Problem 1 : Increasing
subsequence

A : 4 (3 4 8
10)

 Given a sequence of integers, how
would you find the maximum
subsequence (it need not be
consecutive)?

 Q : 3 6 4 9 8 10

Recursive solution
check(start, nmatches,biggest){

int better, i,best=nmatches;
for (i =start; i < n;i++){

if (sequence[i]>biggest){
better = check(i,nmatches+1,sequence[i]);
if (better>best) best = better;
}

}
return best;

}

It’s horrible!

• Exponential time (ie if consider an
increasing sequence it cost 2^n)

• Could potentially end up with a
huge stack.

• Doing the same calculations more
than once.

Find the subproblem

• It seems the length of the longest
subsequence from position p to the end
is important.

• Most of the time a bit of storage is
necessary for execution efficiency.

• So we have a best array(keeping track
of longest tail increasing subsequences.

The solution
best[n-1]=1;
for (int i=n-2;i>=0;i--){
best[i]=1;
for (int j=i+1;j<n;j++){

if (num[i]<num[j])
 best[i]=max(best[i],1+best[j]);

}
cout << max(best.begin(),best.end()) << endl;

What if you want the actual sequence?

Problem 2 : String
matching

 Your friend gives you two words. You want to
remove letters from each word so that you
end up with the same word. How would you
determine the longest such possible word?

 Q : America and Alabama

A : 3 (ama)

Identify the
subproblem

• match[a][b] ie the biggest match of first
a characters of first string and first b
characters of second string.

• match[a][b] = max(match[a-1][b],
(1+match[a-1][b-1])*δ_{match})

• Order of calculation values
• Answer is match[n][m]
• This example is 2D previous was 1D.

Problem 3 : Hidden DP
 Given a word what is the least number of

letters you need to insert anywhere to make it
a palindromic word?

 Q : BANANA

 A : 1 (add B at end)

 Did you know : aibohphobia is the fear
of palindromes?

Solution
• Answer is length of string – length of

biggest palindromic subset.
• Note it’s a match between string and its

reverse.
• Easy exercise to show that the longest

such match will be a palindrome.
• (IOI 2000 Day 1 Question 1)

Problem 4 : Coin
problem

 Given a coin system how would you
calculate the least number of coins you
need to pay a certain amount?

Answer : Clearly need extra array least[n]
that stores the least to pay amount n.

least[n] = min(1+least[n-c1],1+least[n-
c2], …)

Problem 5 : 1998 IOI
Day 2 Question 3

 You are given a regular N-gon with
numbers on node and operators
on edges. Every turn you remove
an edge and combine cross edges
with the node with the value equal
to the operation on edge applied
to those nodes. How would you
maximize the final value?

Answer?
• The subproblem is to keep track of the

maximum value possible from node a
to node b.

• Update function best[a][b] =
max(operation a best[a+1][b],
operation best[a][b-1] b)

• Order do best[a][a+1], then best[a][a
+2], etc.

• Answer is best[1][1]

Problem 6 : Integer
knapsack

 You are designing a contest which isn’t
allowed to be longer than a certain
predetermined length. You are also
given a set of problems. Each problem
has a point value and a certain length.
Find the contest which has the
maximum number of points but within
the length constraint.

Need to be careful!
• Can’t re-use a problem.
• Subproblem is most points for length l

contest after using m problems.
• best[l][m]=max(best[l][m-1],best[l-

length(m)][m-1])
• However we can be a bit space

efficient.
• If we update in the right order we only

need an one-dimensional array.

 The End.

